Overhead Cranes Tutorial: Erection From Prep to CommissioningInside

In large construction and fabrication spaces, overhead/bridge cranes do the heavy lifting—literally. This long-form walkthrough takes you behind the scenes of a mega-project crane install. We’ll cover rails and runway alignment—with the same checklists pro installers use.

Overhead Crane, Defined

An overhead crane rides on parallel runways anchored to a building frame, carrying a trolley-mounted hoist for precise, vertical picks. The system delivers three axes of motion: long-travel along the runway.

They’re the backbone of heavy shops and assembly lines, from beam handling to turbine assembly.

Why they matter:

Safe handling of very heavy, unwieldy loads.

Less manual handling, fewer delays.

Repeatable, precise positioning that reduces damage.

High throughput with fewer ground obstructions.

System Components We’re Installing

Runways & rails: runway girders with crane rail and clips.

End trucks: motorized gearboxes for long-travel.

Bridge girder(s): cambered and pre-wired.

Trolley & hoist: reeving, hook block, upper limit switches.

Electrics & controls: power supply, festoon or conductor bars.

Stops, bumpers & safety: end stops, buffers, travel limits.

Based on design loads and bay geometry, the crane might be a single-girder 10-ton unit or a massive double-girder 100-ton system. The choreography is similar, with heavier rigs demanding extra controls and sign-offs.

Make-Ready & Surveys

A clean install is mostly planning. Key steps:

Drawings & submittals: Freeze the GA and verify reactions with the structural team.

Permits/JSAs: Job Safety Analysis (JSA) for each lift step.

Runway verification: Check baseplates, grout pads, and anchor torque.

Power readiness: Confirm conductor bars or festoon supports, cable trays, and isolation points.

Staging & laydown: Mark crane components with ID tags.

People & roles: Appoint a lift director, rigger, signaler, and electrical lead.

Millimeters at the runway become centimeters at full span. Measure twice, lift once.

Getting the Path Right

If rails warehouse construction are off, nothing else will run true. Targets and checks:

Straightness & elevation: shim packs under clips to meet tolerance.

Gauge (span) & squareness: Check centerlines at intervals; confirm end squareness and expansion joints.

End stops & buffers: Install and torque per spec.

Conductor system: Mount conductor bars or festoon track parallel to the rail.

Log final numbers on the ITP sheet. Correct now or pay later in wheel wear and motor overloads.

Girder Erection & End Trucks

Rigging plan: Choose spreader bars to keep slings clear of electricals. Dedicated signaler on radio.

Sequence:

Install end trucks at staging height to simplify bridge pick.

Rig the bridge girder(s) and make the main lift.

Use drift pins to align flange holes; torque to spec.

Measure diagonal distances to confirm squareness.

Prior to trolley install, bump-test long-travel motors with temporary power (under permit): confirm limit switch wiring. Lock out after test.

The Heart of the Lift

Trolley installation: Mount wheels, align wheel flanges, set side-clearances.

Hoist reeving: Check rope path, sheave guards, and equalizer sheaves.

Limits & load devices: Check overload/SLI and emergency stop.

Cross-travel adjustment: Align trolley rails on a double-girder.

Pendant/remote: Install pendant festoon or pair radio receiver; function-test deadman and two-step speed controls.

A smooth trolley with a quiet hoist is a sign of good alignment. Don’t mask issues with higher VFD ramps.

Electrics & Controls

Power supply: Drop leads tagged and strain-relieved.

Drive setup: Enable S-curve profiles for precise positioning.

Interlocks & safety: Zone limits near doors or mezzanines.

Cable management: Keep loops short, add drip loops where needed.

Commissioning crews love clean labeling and clear folders. If it isn’t documented, it didn’t happen—put it in the databook.

ITP, Checklists, and Sign-Off

Inspection Test Plan (ITP): Third-party witness for critical steps.

Torque logs: Record wrench serials and values.

Level & gauge reports: Note any corrective shims.

Motor rotation & phasing: Document bump tests.

Functional tests: Anti-collisions and zone interlocks.

A tidy databook speeds client acceptance.

Proving the System

Static load test: Hold at mid-span and near end stops; monitor deflection and brake performance.

Dynamic load test: Travel long-run, cross-travel, and hoist at rated speed with test load.

Operational checks: Emergency stop shuts down all motions.

Training & handover: Maintenance intervals for rope, brakes, and gearboxes.

Only after these pass do you hand over the keys.

Applications & Use Cases

Construction & steel erection: handling long members safely.

Oil & gas & power: moving heavy pumps, skids, and pipe spools.

Steel mills & foundries: hot metal handling (with the right duty class).

Warehousing & logistics: high throughput lanes.

Floor stays clear, production keeps flowing, and precision goes up.

Safety & Engineering Considerations

Rigging discipline: rated slings & shackles, correct angles, spreader bars for load geometry.

Lockout/Tagout: test before touch every time.

Fall protection & edges: scissor lifts and manlifts inspected.

Runway integrity: no cracked welds, correct bolt grades, proper grout.

Duty class selection: overspec when uncertainty exists.

A perfect lift is the one nobody notices because nothing went wrong.

Keep It Rolling

Crab angle/drift: verify end-truck wheel diameters and gearbox mounts.

Hot gearboxes: misalignment or over-tight brakes.

Rope drum spooling: dress rope and reset lower limit.

Pendant lag or dropout: antenna placement for radio; inspect festoon collectors.

Wheel wear & rail pitting: add rail sweeps and check clip torque.

A 10-minute weekly check saves days of downtime later.

Quick Answers

Overhead vs. gantry? Bridge cranes ride fixed runways; gantries walk on the floor.

Single vs. double girder? Singles are lighter and cheaper; doubles carry heavier loads and give more hook height.

How long does install take? Anything from a couple weeks to a few months.

What’s the duty class? FEM/ISO or CMAA classes define cycles and service—don’t guess; size it right.

Why Watch/Read This

Students and pros alike get a front-row seat to precision rigging, structural alignment, and commissioning. You’ll see how small alignment wins become big reliability wins.

Want ready-to-use checklists for runway surveys, torque logs, and load-test plans?

Grab the installer pack so your next crane goes in cleaner, faster, and right the first time. Save it to your site tablet for quick reference.

...

Read more arabic articles

...

read more about this products

Leave a Reply

Your email address will not be published. Required fields are marked *